8 research outputs found

    DARIS, a fleet of passive formation flying small satellites for low frequency radio astronomy

    Get PDF
    DARIS (Distributed Aperture Array for Radio Astronomy In Space) is a mission to conduct radio astronomy in the low frequency region from 1-10MHz. This region has not yet been explored, as the Earth's ionosphere is opaque to those frequencies, and so a space based observatory is the only solution. DARIS will undertake an extragalactic survey of the low frequency sky, and can also detect some transient radio events such as solar or planetary bursts. To achieve these scientific objectives, DARIS comprises a space-based array, forming a very large effective aperture, as required for such a long wavelength survey. Each station in the array (each required to be a small satellite to ensure several nodes can be flown) carries three orthogonal dipole antennas, each 5m in length. The more station nodes in the array, the more sensitive the antenna. The entire fleet remains within a 100km diameter cloud. \ud A very large data volume is generated by each node, as the antennas have to capture all radio signals, after which the data can be correlated to find the astronomical signal in the noise. As the astronomical signals also have a noise-like nature, no compression is possible on the data captured by the nodes. The data volume is too high to transfer directly to Earth, and will need to be correlated in space. Distributed correlation between the nodes is technically challenging, and therefore a mothership acts as the central correlator and then downlinks the correlated data (lower volume) to Earth. \u

    Space-based Aperture Array For Ultra-Long Wavelength Radio Astronomy

    Full text link
    The past decade has seen the rise of various radio astronomy arrays, particularly for low-frequency observations below 100MHz. These developments have been primarily driven by interesting and fundamental scientific questions, such as studying the dark ages and epoch of re-ionization, by detecting the highly red-shifted 21cm line emission. However, Earth-based radio astronomy below frequencies of 30MHz is severely restricted due to man-made interference, ionospheric distortion and almost complete non-transparency of the ionosphere below 10MHz. Therefore, this narrow spectral band remains possibly the last unexplored frequency range in radio astronomy. A straightforward solution to study the universe at these frequencies is to deploy a space-based antenna array far away from Earths' ionosphere. Various studies in the past were principally limited by technology and computing resources, however current processing and communication trends indicate otherwise. We briefly present the achievable science cases, and discuss the system design for selected scenarios, such as extra-galactic surveys. An extensive discussion is presented on various sub-systems of the potential satellite array, such as radio astronomical antenna design, the on-board signal processing, communication architectures and joint space-time estimation of the satellite network. In light of a scalable array and to avert single point of failure, we propose both centralized and distributed solutions for the ULW space-based array. We highlight the benefits of various deployment locations and summarize the technological challenges for future space-based radio arrays.Comment: Submitte

    MOBEO – Letting the World see the World

    No full text
    The market for Earth Observation applications is expanding beyond mere government applications, to include commercial products and services that are attractive to the mass consumer market. To exploit the untapped potential of the mobile society, the participants of the SpaceTech 13 Master’s course of the Delft University of Technology investigated the feasibility of a system architecture to distribute high resolution images of the entire globe that are frequently updated and accessible to the mobile society. Such a system would revolutionize the way earth observation data is used by consumers and would pave the way for applications such as daily updates of navigation maps, connecting information in social media to the latest available satellite data or providing location-based services with the most up-to-date images. The challenge was to find an innovative and credible business concept to deliver accurate, up-to-date and relevant Geo-information to the mobile mass market. As a consequence the virtual company MOBEO was created with the purpose of “letting the world see the world”. The mission of MOBEO is to revolutionize within the next five years the way people live and interact with the world around them by making Geo-information universally accessible and useful – anytime and anywhere
    corecore